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Abstract
We present a fully nonequilibrium calculation of the low-temperature transport
properties of a single molecular quantum dot coupled to the local phonon mode
when an ac field is applied to the gate. The resonant behaviour is shown in
the time-averaged differential conductance as the ac frequency matches the
frequency of the local phonon mode, which is a direct consequence of the
satellite-phonon-peak structure in the dot electron spectral function. Different
step structure with and without the external irradiation is found in the I–V
curves, and oscillation behaviour is found in the step height as a function of the
irradiation intensity.

(Some figures in this article are in colour only in the electronic version)

Recent advances in nanotechnology have allowed the fabrication of very small molecular
quantum dots coupled to the macroscopic charge reservoirs (leads) [1]. In contrast to the
semiconductor dot, which is quite rigid in space, the molecules involved in the electron
tunnelling process naturally possess the vibrational degrees of freedom which will inevitably
react to the transform of electrons through the molecular quantum dots [1]. It was first observed
in a single C60 molecule that quantum mechanical behaviour of the centre of mass oscillation
of a C60 can be excited by the electrons tunnelling from electrodes and the signs of vibrational
sidebands were shown in transport through a single molecule [1]. Similar vibrational sideband
structures were found in other more complicated molecules. In addition to the importance
in molecular-scale electronics from the application point of view, these artificial, tunable
devices are potentially important for understanding the basic physics including the many-
body effect [2]. Theoretically, a lot of effort has been focused on the quantum conductance of
molecular systems based on the kinetic equation approach [3], the rate equation approach [4],
the correlation effects [5], the nonequilibrium quantum theory [6–9], the strong coupling to
environment [10], the numerical renormalization group calculation [11], and more recently a
new proposal to decouple the electron–phonon interaction from the total electron system [12].

So far, the stationary quantum transport through the molecular dots has been considered,
while the influence of a time-dependent ac field on the current has not been well addressed.
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Irradiation of a quantum dot with an ac field [13–15] offers a new way of affecting its
dynamics, which enables one to study the effect of electron–phononinteraction on the transport
phenomenon of molecular dots in an essentially nonequilibrium condition.

In this paper we use the Keldysh nonequilibrium Green function technique to study the
nonlinear ac transport through a single-molecular quantum dot coupled to a local phonon
mode with the external irradiation applied to the gate. After a canonical transformation, we
obtain a formula for the time-dependent current in general terms of bias, temperature, the
intensity and frequency of the external ac field, and the electron–phonon coupling. We show
that the satellite-peak structure in the dot electron spectral function due to the electron–phonon
interaction can be probed by imposing on top of the gate bias an ac bias voltage. The satellite-
peak structure in the dot electron spectral function gives rise to resonant behaviour in the
time-averaged current as the ac frequency matches the frequency of local phonon mode, which
can be observed directly in experiments. The calculated I–V curves show the different step
structures with and without the external irradiation, respectively, and the step height shows the
Bessel-type oscillation behaviour as a function of irradiation intensity.

To understand the basic physics of effect of electron–phonon interaction on the time-
dependent transport through a single-molecular quantum dot, in this work we consider a
simplest Holstein-type model with a single phonon mode is employed to address the vibrational
degrees of freedom in the molecular dot. The single-molecular quantum dot is assumed to have
only one single-particle energy level (measured with respect to the zero-bias Fermi energies
of the two leads) connected to two noninteracting electronic reservoirs via the tunnelling
barriers. The two reservoirs remain in local equilibrium with the Fermi distribution, and each
has only one electronic channel. All other complexity of real molecular devices, apart from
the interaction with the phonon mode, is ignored. Moreover, the electron–phonon interaction
takes place solely in the central molecular quantum dot,while the high-order exchange between
electrons and phonons and the damping effect of vibration by coupling to the environment [10]
is neglected. We also assume that only the single-mode Einstein phonon is directly coupled
to the electron in the single-molecular quantum dot. Moreover, we do not include the on-site
electron–electron Coulomb interaction in quantum dots, which is crucially important to the
Coulomb blockade and the many-body Kondo effect at low temperatures, to avoid further
complications.

Then the system Hamiltonian can be written as

H = Hleads + HX + HD + HT, (1)

where the subscripts leads, X, D and T stand for leads, local phonon mode, dot and tunnelling
coupling between dot and leads, respectively. Here,

Hleads =
∑

k,η,σ

εkηc†
kησ ckησ ,

HX = ω0a†a,

HD =
∑

α

[
ε0(t) + λ

(
a + a†

)]
d†

αdα,

HT =
∑

k,η,σ,α

[
V η

kσ,αc†
kησ dα + H.C.

]
.

(2)

c†
kησ (ckησ ) are creation (annihilation) operators for the noninteracting electrons with

momentum k and spin index σ in the left (η = L) or right (η = R) metallic leads. ω0 is
the frequency of the single phonon mode, and a† (a) is the phonon creation (annihilation)
operator. HD describes the electron in the molecular quantum dot coupled to the local phonon
mode with the coupling constant λ, where d†

α (dα) is the dot–electron creation (annihilation)
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operator, and ε0(t) is the single energy level of the dot, which can be tuned by the external
irradiation, ε0(t) = ε0 + Vr cos(ωrt) for harmonic bias. Here we assume that the metallic leads
are dc biased, neglecting the possible ‘leakage’ of the irradiating ac field to the leads. The
generalization to the case of nonzero ac bias is straightforward. HT describes the tunnelling
coupling between dot and leads, where the tunnelling matrix elements V η

kσ,α transfer electrons
through an insulating barrier out of the dot. We emphasize that when the inelastic processes
involving phonon emission and absorption are considered when electron tunnelling through the
single-molecular quantum dot, the nonequilibrium electron transport governed by Hamiltonian
equation (1) becomes a strongly correlated many-body problem which cannot be solved exactly.
Therefore, the usual perturbation theory, which has been successfully applied in studying the
conventional transport problems in bulk materials, is invalid in treating the nonequilibrium
electron transport in a single-molecular quantum dot with strong electron–phonon interaction.

Based on the Keldysh nonequilibrium Green function formalism [16], the time-dependent
current from the η lead to the dot is given by [13]

Jη(t) = −2e

h̄

∑

α

∫ t

−∞
dt ′

∫
dε

2π
Im

{
eiε(t−t ′)�η

α

[
G<

αα

(
t, t ′) + fη (ε) Gr

αα

(
t, t ′)]}, (3)

where fL(R)(ε) are the Fermi distribution functions of the left (right) leads, which have different
chemical potentials upon a dc bias voltage µL−µR = eV . �η

α = 2πρα(0)|V η

kα,α |2 characterizes
the tunnelling coupling between dot and leads, and ρα(0) is the spin-α band density of states
in the leads. Here we assume that the leads give rise to a flat, energy independent, density
of states (i.e., the wide-band limit). Gr(<) is the retarded (Keldysh less) Green function of
quantum dot. It is noted that the general formula of time-dependent current through central
interacting dot coupled to two leads was derived by Jauho et al [13], who expressed the current
in terms of the distribution functions in the leads and the local properties of the central dot,
such as the occupation and density of states (i.e., via the retarded and lesser Green functions
of dot electrons).

In order to compute the time-dependent current, one has to compute the dot electron
Green functions in the presence of both the electron–phonon interaction and the tunnelling
coupling between dot and leads. The problem described by the Hamiltonian equation (1) is a
many-body problem involving the phonon emission and absorption when the electron tunnels
through the central quantum dot. In the case of strong electron–phonon coupling, the usual
perturbation theory is invalid when dealing with this nonequilibrium transport problem. The
Green function can be calculated by performing the nonperturbative canonical transformation
S = (λ/ω0)

∑
α d†

αdα(a†−a) [17], and then the dot level is renormalized to ε0 −
, where 
 =
λ2/ω0, and the tunnelling coupling term is also renormalized as HT = ∑

k,η,σ,α [V η

kσ,αc†
kησ dα X+

H.C.], where X = exp[−(λ/ω0)(a† − a)]. Ignoring the effects of narrowing the bands
of leads due to the phonons [18], the dot–electron Green function can be decoupled as
Gr

αα′ (t, t ′) = G̃r
αα′ (t, t ′)〈X (t)X†(t ′)〉ph, where G̃r

αα′(t, t ′) = −i�(t − t ′)〈{d̃α(t), d̃†
α(t ′)}〉el,

d̃α(t) = eiH elt dαe−iH el t , H el = HX, and X (t) = eiH pht Xe−iH ph t . The renormalization
factor due to the electron–phonon interaction is [17] 〈X (t)X†(t ′)〉ph = e−�(t−t ′), where
�(t) = (λ/ω0)

2[Nph(1 − eiω0t ) + (Nph + 1)(1 − e−iω0 t)], and Nph = 1/[exp(βω0) − 1]. The
retarded Green function can be easily obtained by the standard Dyson equation approach [13],
and the result is

Gr
αα′

(
t, t ′) = −iδαα′�

(
t − t ′) e−i

∫ t
t ′ dτ Vr cos(ωrτ) × e−i[ε0−
− i

2 �α](t−t ′)−�(t−t ′), (4)

where �α = �L
α + �R

α is the total tunnelling coupling to the leads. Following the operational
rules [19] to the Dyson equation for the contour-ordered Green function, the Keldysh Green
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function is found to be

G<
αα′

(
t, t ′) = δαα′

∫
dt1

∫
dt2 G̃r

αα (t, t1) �<
α (t1, t2) G̃a

αα

(
t2, t ′) , (5)

with the lesser self-energy

�<
α (t1, t2) = i

∑

η

∫
dε

2π
�η

αe−�[−(t1−t2)] fη (ε) e−iε(t1−t2). (6)

Without the electron–phonon interaction, the above result fully agrees with that for time-
dependent transport through a noninteracting quantum dot [13].

Substitution of the Green function equations (4)–(6) into equation (3) gives

Jη(t) = − e

h̄

∑

α

�η
α

∫
dω

2π

{
2 fη(ω) Im [Aα (ω, t)] − 2

(∑

η

�η
α fη(ω)

)

×
∫ t

−∞
dt1e−�α(t−t1) Im [Aα (ω, t1)]

}
, (7)

with Aα(ω, t) = ∫ t
−∞ dt ′eiω(t−t ′)Gr

αα(t, t ′). Obviously, in the time-independent case, Aα(ω)

is just the Fourier transform of the retarded Green function Gr
αα(ω). After some algebra, we

find that for this model

Aα (ω, t) = e−g(2Nph +1)
∑

l,m,n

(−1)l+m ei(l−m)ωr t enω0β/2

× Jl

(
Vr

ωr

)
Jm

(
Vr

ωr

)
In

{
2g

[
Nph

(
Nph + 1

)]1/2
}

× 1

ω − (ε0 − 
) + mωr − nω0 + i
2�α

, (8)

where parameter g = (λ/ω0)
2, and Jm(z) is the Bessel function of the mth order, In(z) is the

Bessel function of complex argument, and l, m, n = 0, ±1, ±2, . . .. Equation (8) together
with the current expression equation (7) provides the complete solution to the time-dependent
transport of the molecular quantum dot coupled to the local phonon mode in the presence of ac
field. Although equation (7) looks similar to the result of time-dependent current equation (65)
in [13], which is valid only in the case of proportional tunnelling coupling (i.e., �L = λ�R,
where λ is a constant), we remark that equation (7), which includes the contributions from both
the retarded (equation (4)) and lesser (equations (5) and (6)) Green functions, is the general
formula for time-dependent current in quantum dot with electron–phonon interaction in the
presence of ac field. This general time-dependent current formula can be applied in the much
more complicated case where the proportional coupling between the dot and the leads is not
justified. It is easy to show that for the noninteracting case the above expression is just the
Landauer–Büttiker formalism developed based on the scattering matrix theory. The connection
between these two formalisms was first established by Jauho et al [13].

Experimentally, what is interesting is the current on a timescale long compared to
2π/ωr . Here we discuss the time-averaged current 〈J (t)〉, which could be directly relevant to
experiment. For this model, we then obtain

〈JL(t)〉 = −〈JR(t)〉 = 2e

h̄

(
1

2

)
e−g(2Nph+1)

∑

α

�L
α �R

α

∫
dω

2π

× [ fL(ω) − fR(ω)]
∑

m,n

J 2
m

(
Vr

ωr

)
× In

(
2g

[
Nph

(
Nph + 1

)]1/2
)

enω0β/2

× 1

[ω − (ε0 − 
) + mωr − nω0]2 +
(

�α

2

)2 . (9)
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Figure 1. The time-averaged differential conductance, in units of 2e2/h through the molecular
quantum dot as a function of the Fermi energy EF measured relative to the single level of the dot
in the absence (Vr = 0), and in the presence of the ac field with the frequency ωr = ω0 and three
different values of irradiation intensities Vr = 0.5ω0, ω0, and 1.5ω0, respectively. The energy is
measured in units of the frequency of the phonon mode ω0, λ = 0.4ω0, ε0 = 0, and � = 0.2ω0.

In the absence of external irradiation, i.e., Vr = 0, equation (9) fully agrees with the result
of dc current in [8, 9]. The contribution of the external irradiation to the transport becomes
significant when the argument of the Bessel function, Vr/ωr , is of the order of unity. Another
important consequence is that the time-averaged current under irradiation is proportional to
J 2

m . As a result, one should expect the change in current due to the external irradiation to
depend on the intensity of irradiation.

For simplicity, we consider the tunnelling coupling between the molecular dot and the two
leads to be symmetric and independent of the spin index, i.e., �L

↑ = �L
↓ = �R

↑ = �R
↓ = �. In

figure 1, we plot the zero-temperature differential conductance as a function of the Fermi energy
measured relative to the single level ε0 of the dot in the external ac field with frequencyωr = ω0

and different values of irradiation intensities. For comparison, we also plot the differential
conductance in the absence of ac field. At zero ac bias voltage, our result agrees well with that
in [8, 9], where the electron–phonon coupling can lead to the satellite resonant peaks. Figure 1
shows that the ac field with frequencyωr = ω0 can lead to the enhancement of satellite resonant
peaks in the positive energy region and the appearance of new peaks in the negative energy
region. One can also see that the main peak is suppressed by the irradiation while increasing
the intensity. In figure 2, we plot the zero-temperature differential conductance as a function
of the frequency of ac field for different values of irradiation intensities by fixing the Fermi
energy of leads EF as EF − (ε0 −
) = 0 to avoid unnecessary complications. As the intensity
of the ac field increases, resonant signals are clearly shown when the frequency of the ac field
satisfies mωr = nω0. The satellite-phonon-peak structure in the dot electron spectral function,
as shown in [8, 9] and also in figure 1 of this paper, gives rise to resonant behaviour in the
conductance as the irradiating ac frequency matches the frequency of local phonon mode, and
can be observed directly in experiments. Figure 2 also shows that more resonant signals can
be observed when increasing the irradiation intensity.

Figure 3 shows the calculated zero-temperature current–voltage curves with and without
the external ac irradiation, respectively. Here we assume the leads to be symmetrically
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ω

Figure 2. The time-averaged differential conductance, in units of 2e2/h as a function of the
frequency of irradiating ac field for different intensities of ac field with Vr/ω0 = 0.25, 0.5, 1, and
2, respectively. Here λ/ω0 = 1, ε0 = 0, � = 0.2ω0, and EF = (−1)ω0.

ω

ω

Figure 3. Current–voltage characteristics, in units of 2e/h, without (Vr = 0) and with the ac field
for the different irradiative frequencies: ωr = 0.5ω0 and 1ω0. Here, λ/ω0 = 1, EF/ω0 = −1,
ε0 = 0, Vr/ω0 = 2, and � = 0.05ω0.

voltage biased, i.e., +V/2 on the left lead and −V/2 on the right one, to avoid unnecessary
complications. In the absence of external ac field, clear steps appear at roughly 2ω0 intervals in
the weak tunnelling coupling limit, corresponding to eV/2 = ±nω0, with n = 0, 1, 2, . . ., and
the height of the N th step decreases with N , which can be easily understood from equation (10)
(see below) by taking Vr = 0 for small electron–phonon interaction. In the presence of ac
field with frequency ωr = ω0, steps appear at the same intervals 2ω0 as those in the zero ac
field, while the step height is modulated by the Bessel function due to the irradiation (see
equation (10) below). Figure 3 also shows that more steps appear at the intervals ω0 in the
case of ωr = 0.5ω0, corresponding to eV/2 = mωr − nω0 with m = 0, ±1, ±2, . . .. The
zero-temperature N th step’s height in an external ac field with frequency ωr = ω0 can be
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λ
λ
λ
λ

Figure 4. The height of the zeroth (N = 0) (a) and the first (N = 1) (b) step, in units of 2e/h, as a
function of the irradiation intensity by fixing the Fermi energy of the leads EF as EF −(ε0−
) = 0.
Here, ωr = ω0, and � = 0.05ω0.

analytically obtained from equation (9) at the fixed Fermi energy EF as EF − (ε0 − 
) = 0,


JN = π

(
2e

h

)
e−g

∑

α

�L
α �R

α

�L
α + �R

α

∞∑

n=0

gn

n!

[
J 2

n+N

(
Vr

ωr

)
+ J 2

n−N

(
Vr

ωr

)]
. (10)

In figure 4, we plot the height of the N th step, where N = 0 and 1, as a function of
the irradiation intensity for different values of the electron–phonon coupling constant. The
oscillation behaviour of the step height is clearly observed for the small electron–phonon
interaction due to the external irradiation (see equation (10)), while this oscillation smears out
for large electron–phonon interaction. The large electron–phonon interaction enhances the
processes of absorption and emission of many (n > 1) phonons when the electron tunnels
through the dot, and then the summation of Bessel function with large values of indices n ± N
results in the smearing of the oscillation behaviour (see equation (10)).

For various molecular mesoscopic systems studied in experiments, a considerably wide
range of phonon energy has been estimated from 0.01 to 10 meV [1, 2]. To experimentally
investigate the resonant behaviour in time-dependent transport through molecular quantum
dots, we suggest that the device is subject to a microwave irradiation field with the frequency
(ωr) in the region of GHz to THz and the intensity with the same order (Vr ∼ ωr). More
recently, the photon-induced Kondo satellites have been observed experimentally in a single-
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electron transistor irradiated with microwaves [15]. Experimental effort on a single-molecular
transistor along this direction is in progress.

Summarizing, using the Keldysh nonequilibrium Green function technique, we have
studied the time-dependent transport through a single-molecular quantum dot coupled to a
local phonon mode in the presence of an external ac field. As an example, we have considered
resonant electron tunnelling through a single level coupled to a single phonon mode with the
external irradiation applied to the gate. This model without the ac irradiation field, although
quite simple, is popular in connection with electron transport through a single molecule with
vibrational mode. We have shown that the external irradiation provides another important
experimental tool where both the equilibrium and out of equilibrium transport phenomenon
can be probed. In particular, resonant behaviour as the ac frequency matches the frequency of
local phonon mode is shown to exist as a result of the satellite-phonon-peak structure in the
dot electron density of states. The nonlinear I–V curves exhibit new structure caused by the
external irradiation, which can be investigated by the recent experimental techniques. We have,
as mentioned in the introduction, neglected the on-site electron–electron Coulomb interaction
which is important to the many-body Kondo effect at low temperatures. It is, however, an
interesting question to ask how the Kondo effect is influenced by the electron–phonon coupling,
and how the interplay between the electron–electron interaction and electron–phonon coupling
affects the time-dependent electron transport properties in a single-molecular quantum dot.
The Kondo effect has also been observed in C60 single molecules coupled to metallic [2]
and ferromagnetic [20] electrodes. Several theoretical works have focused on the electron
transport through molecular quantum dots coupled to a single vibrational mode in the Kondo
regime in the absence of irradiation field based on the nonperturbative diagrammatic real-time
technique [21], the numerical renormalization group method [11], a generalized Schrieffer–
Wolff transformation [22], and the equation-of-motion approach with the improved truncation
scheme [23]. It was found that the Kondo resonant peaks will break up into a series of
vibron sidebands. It could be predicted that in the presence of microwave irradiation field, the
resonant behaviour will show in the time-average transmission and the nonlinear differential
conductance when the irradiation frequency matches the Kondo sidebands. The derived time-
dependent current can be applied to a more complicated system which includes the on-site
electron–electron Coulomb interaction. Work along this line is still in progress.
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